

Note

Packing of 3- μ m particle ODS silicas using hexanol-1-methylene chloride (1:1) as a slurry medium in high-performance liquid chromatography

YOSHIO YAMAUCHI and JU KUMANOTANI*

Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minatoku, Tokyo (Japan)

(Received March 2nd, 1981)

In high-performance liquid chromatography (HPLC) microparticulate silicas with particle sizes of 5 and 10 μ m have been packed widely and effectively by the balanced density technique^{1,2}, the viscosity method³ and the low viscosity method with a single-component solvent *e.g.*, hexane⁴, chloroform⁴, methanol⁵ or carbon tetrachloride^{6,7}.

Recently silicas with particle sizes $\leq 3 \mu$ m have become more attractive as microparticulate packings than the 5- or 10- μ m silicas^{8,9,10} because they give better resolution in HPLC. However, some difficulties have been recognized in the slurry packing procedures.

Previously, we reported that hexanol-1 can be used as a high potential slurry medium for packing 5- μ m octadecylsilane (ODS) silicas or 5- μ m silver-coated silicas^{11,12}. The use of hexanol-1 is extended to 3- μ m ODS silicas. Though 3- μ m ODS silicas are well-dispersed in hexanol-1, the slurry made therefrom did not achieve high efficiencies, presumably due to the insufficiently controlled viscosity of the slurry. However, we found that the use of hexanol-1-methylene chloride (1:1) as a slurry medium easily enabled to make highly resolvable columns packed with 3- μ m ODS silicas with a constant-flow pump conventionally used in HPLC systems.

This note describes a high-efficiency slurry packing procedure for 3- μ m ODS silicas, which provides a powerful technique in HPLC.

EXPERIMENTAL

Adsorbents

Develosil ODS-3 (3 μ m, 20% loading; Nomura Chemical, Seto-City, Japan) and Unisil QC-18 (5 μ m, 20% loading; Gasukuro Kogyo, Tokyo, Japan) were used without further modifications.

Solvents

Commercially available chromatographic and reagent grade solvents were used.

HPLC systems

The chromatographic system consisted of a plunger pump (Type SF 0396-57; Milton Roy, Philadelphia, PA, U.S.A.), a 350 kg/cm² pressure gauge (Umetani Seiki, Osaka, Japan), a bellows-type damper (Type DAM, Umetani Seiki) and a 20- μ l syringe-loading sample injector (Rheodyne Model 7125). The effluent was monitored at 254 nm with a UV detector (UVLOG; Oyobunko, Tokyo, Japan).

Column packing

A mixture of 2.0 g (8.0 g)* of the 3- μ m ODS silicas and 15 ml (30 ml) of hexanol-1-methylene chloride (1:1) was sonicated for 2 min. The slurry obtained was placed in a 15-ml (30-ml) reservoir connected to a 15 cm \times 4.6 mm I.D. (25 cm \times 8.0 mm I.D.) analytical column. Methylene chloride was pumped through the column at a flow-rate of 3.0 ml/min (4.5 ml/min) using a 800 kg/cm² high-pressure pump (NS-800-15DX; Nihon Seimitsu, Tokyo, Japan). It took 5–6 min (8–9 min) to replace the slurry medium with the pressure of the packing system at 400 kg/cm². Then 50 ml of methylene chloride were pumped through the column at the same pressure, followed by methanol at a pressure of 450 kg/cm² for 60 min.

Similarly the 5- μ m ODS silicas were packed into a 15 cm \times 4.6 mm I.D. (25 cm \times 8.0 mm I.D.) column using *n*-hexanol-1-chloroform (1:1) as the slurry medium. Chloroform was pumped through the column at a flow-rate of 8.0 ml/min (15.0 ml/min), followed by methanol at a pressure of 450 kg/cm².

RESULTS AND DISCUSSION

Fig. 1 shows a chromatogram of a mixture of polycyclic aromatic hydrocarbons on the 3- μ m silica column using acetonitrile–water (7:3) as eluent. Furthermore, a value

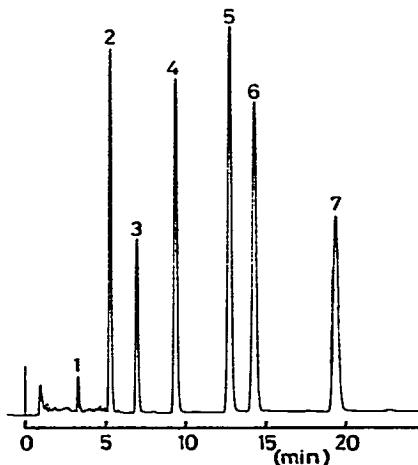


Fig. 1. HPLC chromatogram for polycyclic aromatic hydrocarbons. Column, Develosil ODS-3 (3 μ m); flow-rate, 1.5 ml/min; UV detection, 254 nm, 0.16 a.u.f.s. Peaks: 1 = benzene; 2 = naphthalin; 3 = biphenyl; 4 = phenanthrene; 5 = fluoranthene; 6 = pyrene; 7 = chrysene.

* Values in parenthesis in this section correspond to those for a semi-preparative column.

TABLE I

COMPARISON OF HETP FOR CHRYSENE IN HPLC BETWEEN 3- μ m AND 5- μ m ODS COLUMNS

Column size	Gel particle size (μ m)	Slurry medium		Column pressure (kg/cm ²)**	Flow-rate of eluent (ml/min)	HETP (μ m)
		Mixture*	Flow-rate (ml/min)			
15 cm x 4.6 mm						
I.D.	3		3.0	400	1.2	8.8, 8.5, 7.9
	3	H-MC (1:1)	3.2	550	1.2	11.1
	3		3.5	650	1.2	15.0
	5	H-CF (1:1)	8.0	400	1.2	15.0
25 cm x 8.0 mm	3	H-MC (1:1)	4.5	400	2.5	8.3
	5	H-CF (1:1)	15.0	400	2.5	12.5

* H = Hexanol-1; MC = methylene chloride, CF = chloroform.

** Pressure when slurry medium is replaced completely with methylene chloride or chloroform.

for the height equivalent to a theoretical plate (HETP) was measured on the basis of the chrysene peak on the analytical column packed with the 3- μ m silicas at varying column pressure (400–650 kg/cm²) or at varying flow-rates of the slurry medium (3.0–3.5 ml/min).

From Table I it can be seen that the lowest HETP values for chrysene, (8.8, 8.5 and 7.9 μ m) were obtained with good reproducibility at a slurry medium flow-rate of 3.0 ml/min. The capacity factors were 13.2, 13.5 and 13.4, respectively.

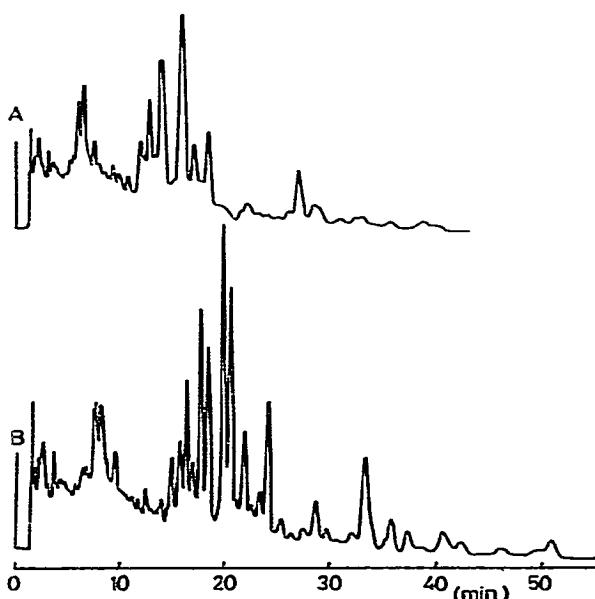


Fig. 2. Chromatograms of dimethylurushiol dimer by HPLC. A, 3- μ m ODS silicas; B, 5- μ m ODS; eluent, acetonitrile; column, 15 cm x 4.6 mm I.D. Other conditions as in Fig. 1.

Comparable HETP values were obtained for the 3- μm ODS preparative column (see Table I).

The HETP values for chrysene using the 5- μm ODS column, were 15 μm and 12.5 μm for the 15 cm \times 4.6 mm I.D. and the 25 cm \times 8.0 mm I.D. column, respectively. The 5- μm ODS column is clearly inferior in resolution compared to the 3- μm ODS column.

Fig. 2 illustrates the difference in the resolution of dimethylurushiol dimer¹³ (separated from Japanese Lac by gel permeation chromatography) by HPLC using the 3- μm and 5- μm ODS columns packed in this work. It can be seen that higher resolution is attained for the 3- μm ODS column when compared to the 5- μm one.

ACKNOWLEDGEMENTS

The authors acknowledge Mr. Nomura for the gift of Develosil ODS-3 and Dr. R. Oshima for valuable discussion.

REFERENCES

- 1 R. E. Majors, *Anal. Chem.*, 44 (1972) 1722.
- 2 J. J. Kirkland, *J. Chromatogr. Sci.*, 10 (1972) 593.
- 3 J. Asshauer and I. Halász, *J. Chromatogr. Sci.*, 12 (1974) 139.
- 4 R. M. Cassidy, D. S. LeGay and R. W. Frei, *Anal. Chem.*, 46 (1974) 340.
- 5 J. H. Knox and A. Pryde, *J. Chromatogr.*, 112 (1975) 171.
- 6 B. Coq, C. Gonnet and J.-L. Rocca, *J. Chromatogr.*, 106 (1975) 249.
- 7 C. Gonnet and J. L. Rocca, *J. Chromatogr.*, 109 (1975) 297.
- 8 N. H. C. Cooke and K. Olsen, *J. Chromatogr. Sci.*, 18 (1980) 512.
- 9 T. J. N. Webber and E. H. McKerrell, *J. Chromatogr.*, 122 (1976) 243.
- 10 P. A. Bristow, P. N. Brittain, C. M. Riley and B. F. Williamson, *J. Chromatogr.*, 131 (1976) 57.
- 11 Y. Yamauchi and J. Kumanotani, *Seisan Kenkyu*, 32 (1980) 255.
- 12 Y. Yamauchi, R. Oshima and J. Kumanotani, *J. Chromatogr.*, 198 (1980) 49.
- 13 T. Kato and J. Kumanotani, *J. Polymer Sci., Part A-1*, 7 (1969) 1455.